The Role of Hippocampal Structural Synaptic Plasticity in Repetitive Transcranial Magnetic Stimulation to Improve Cognitive Function in Male SAMP8 Mice.
نویسندگان
چکیده
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been used to improve cognitive function, but the stimulation protocols are variable and the underlying mechanism is unclear. Therefore, we intend to examine whether 5Hz rTMS with 30% maximum output could improve cognitive functions in senescence-accelerated-prone mouse 8 (SAMP8) through changing synaptic plasticity. METHODS SAMP8 and senescence-accelerated-prone mouse/resistant 1 (SAMR1) (7-month old male) were randomly divided into 3 groups: SMAP8 rTMS group (P8-rTMS), SMAP8 sham-rTMS group (P8-sham), and SAMR1 sham-rTMS group (R1-sham). The P8-rTMS group was treated daily with 5Hz rTMS with 30% maximum output for 14 consecutive days, whereas the other two groups were controls without rTMS stimulation. Morris water maze (MWM) experiment was performed after rTMS or sham treatment to assess the effect of rTMS on cognitive function. Reverse transcription polymerase chain reaction and Western blot assays were used to detect the mRNA and protein expression of presynaptic Synapsin (SYN) and postsynaptic density 95 (PSD95) in the hippocampus of these mice. RESULTS The mean escape latency of the P8-rTMS group was significantly shorter than that of the P8-sham group. The number of platform crossings of the P8-rTMS group was significantly higher than that of the P8-sham group. rTMS significantly upregulated the protein and mRNA expression of SYN and PSD95 in the hippocampus of p8-rTMS mice compared to those of P8 sham mice. CONCLUSION 5Hz rTMS with 30% maximum output enhances learning and memory in the SAMP8 mice. This improvement may be associated with the increased expression of synaptic structure proteins SYN and PSD95 in the hippocampus.
منابع مشابه
Role of Repetitive transcranial magnetic stimulation on drug use craving and addictive behaviors: Review Study
Introduction & Objective: Repetitive transcranial magnetic stimulation (rTMS) is an electro physiologic brain stimulation and integration technique that can change the cortical excitability of the target area in the brain and modulate the nervous and muscular ductility. Addiction is associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC) and altered cerebral oscillations. Acco...
متن کاملThe Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain
Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...
متن کاملLow-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Function and Synaptic Plasticity in APP23/PS45 Mouse Model of Alzheimer’s Disease
Alzheimer's disease (AD) is a chronic neurodegenerative disease leading to dementia, which is characterized by progressive memory loss and other cognitive dysfunctions. Recent studies have attested that noninvasive repetitive transcranial magnetic stimulation (rTMS) may help improve cognitive function in patients with AD. However, the majority of these studies have focused on the effects of hig...
متن کاملThe Effect of rTMS with Rehabilitation on Hand Function and Corticomotor Excitability in Sub-Acute Stroke
Objectives: Stroke is the leading cause of long-term disability. Hand motor impairment resulting from chronic stroke may have extensive physical, psychological, financial, and social implications despite available rehabilitative treatments. The best time to start treatment for stroke, is in sub-acute period. Repetitive transcranial magnetic stimulation (rTMS) is a method of stimulating and ...
متن کاملRepetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures.
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that can alter cortical excitability in human subjects for hours beyond the stimulation period. It thus has potential as a therapeutic tool in neuropsychiatric disorders associated with alterations in cortical excitability. However, rTMS-induced neural plasticity remains insufficiently understood at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2017